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A numerical study of the flows arising in a conducting liquid under the action of a rotating magnetic field as
well as under its interaction with gravitational and thermocapillary convection has been made. The bounda-
ries of the transition to the oscillating regime of convective flows have been determined. Regions of mixed
flows, in which the impurity macrosegregation in crystals grown by the Bridgman and floating-zone methods
decrease, have been revealed. It has been shown that regions of flows in which both a smooth increase in the
impurity macrosegregation and a change in the form of a clearly defined extremum are observed also exist.
The possibilities of mathematical modeling of geophysical problems with the use of a rotating magnetic field
are discussed.

Introduction. With increasing number of elements in large-scale integration circuits, the general tendency
being towards microminiaturization of electronic systems, the requirements on micro- and macrohomogeneity of
monocrystals are becoming more stringent. To control the transfer of doping impurities in the process of monocrystal
growth, various methods are used: rotation, vibration, acoustic and magnetic fields. At present, further improvement of
the methods for growing monocrystals is only possible with a detailed study of the melt flow and the heat-and-mass
transfer under these conditions. The methods of mathematical modeling thereby play the determining role, since they
permit finding the direction of further experimental studies and estimating the expected effect of proposed improve-
ments. In the last few years, more and more attention has been given to the effects of a rotating magnetic field (RMF)
during growth of monocrystals of semiconductor materials from melts having in the liquid state electrical conduction
in metals.

An RMF is applied during continuous casting of steel to intensify the stirring of the liquid metals with the
aim of obtaining a better structure of the alloy and decreasing the porosity and liquation inhomogeneity of ingots. The
investigation of the magnetohydrodynamic flows as applied to this technology was conducted using approximate
mathematical models and calculation algorithms. This is due to the fact that the problem solution is a complicated task
of computational mathematics. In the three-dimensional flow generated by the RMF, the determining role is played by
the secondary flow arising in a limited volume of rotating liquid. To determine the secondary-flow components, the
authors of [1, 2] used integral relations, and the authors of [3] used the method of expansion in the small parameter,
the Ekman number, characterizing the viscous boundary-layer thickness at the end surfaces of a liquid cylindrical
space. To describe the turbulent flow of the melt in a real technological process, turbulence models obtained for the
condition of external flow over solid surfaces were used. In [4, 5], of greatest interest are the experimental data.

The rotating magnetic field began to be used in the technology of single-crystal growing relatively recently.
In so doing, different methods of single-crystal growth were considered: the Czochralskii and Bridgman methods [6]
and the moving-heater [7–9] and floating-zone [10] methods. In [6, 10], the crystal growth was influenced by the
earth’s gravitational acceleration, in [7, 8] — by a lowered gravitational acceleration (g = 10−3 of earth’s acceleration),
and, finally, in [9] — an acceleration close to zero (g D 10−5 of earth’s acceleration). In the Bridgman and moving-
heater methods, the liquid is confined within the solid ends and the solid side walls of the ampoule. In the Czochral-
skii and floating-zone methods, the liquid has free surfaces and the flow in the rotating liquid interacts with the
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thermocapillary convection caused by the temperature dependence of the surface tension. The melt flow rates during
crystal growth are much lower, which simplifies the development of programs for exact numerical investigations of
these processes.

In [6–8], primary consideration was given to the RMF dependence of the form of the crystallization boundary.
These studies have shown that the influence of the RMF on the form of the interphase boundary is weak and inde-
finitive [6, 7]. In the experiment performed on board the Photon-7 and Photon-9 drone space vehicles [9], only a posi-
tive effect connected with the obtaining of a more uniform impurity distribution along the crystal axes with the use of
a rotating magnetic field was noted. This effect could be predicted on the basis of the available data on the impurity
distribution in carrying out the technological process in zero gravity and the slow flows generated in the liquid by a
rotating low-intensity magnetic field (Ha2Reω = 3.3⋅103–7.6⋅105) in microgravity. The same data permit concluding that
the secondary flow generated by a relatively weak RMF should lead to an increase in the radial nonuniformity (impu-
rity microsegregation). Moreover, the subsequent analysis has shown [11] that individual flow conditions fall within
the region of the maximum of the radial impurity distribution nonuniformity.

In the experiment on crystal growth by the floating-zone method performed on the ground [10], a decrease in
the temperature oscillation and impurity banding (impurity microsegregation) in the silicon crystal obtained with the
use of an RMF was observed. Such an effect of a rotating magnetic field could be expected. It is known that the ap-
pearance of a weak azimuthal velocity leads to oscillation thermocapillary convection. A strong rotating liquid flow
generated by a magnetic field should lead to an averaging of the azimuthal velocity and an increase in the three-di-
mensional flow stability. In one of the figures in [10], some increase in the radial macrononuniformity of the impurity
distribution (radial impurity macrosegregation) can be noted. However, this effect is not discussed in the publication.
We also note that [10] presents a preliminary ground investigation, which should be completed with an experiment in
microgravity. Thus, it can be noted that the problem of optimization of the RMF parameters in the process of single-
crystal growth is topical.

Numerical investigations make it possible to choose a correct direction of experimental studies and consider-
ably promote this work and reduce its cost, which is particularly important for space material science. Technological
processes of crystal growth are much slower than the process of continuous casting of steel. Therefore, one can use
the well-developed methods of numerical studies of viscous incompressible liquid flows and heat-and-mass transfer.

We began to study the problem of using the RMF with systematic numerical calculations of the flow structure
at boundary conditions corresponding to different methods of crystal growth. We considered regimes with a combina-
tion of the secondary flow generated by the RMF with the thermal gravitational or thermocapillary convection in [12].
To increase the accuracy of calculations in the region of higher liquid flow rates, including the oscillating regime, we
developed programs for numerical solution of the Navier–Stokes equations with a higher order of approximation by
spatial coordinates. On the basis of the works devoted to numerical investigations of the problem of crystal growth by
different methods [13–15], the direction of the investigation that can give a positive effect in using the RMF was de-
termined. First, it is necessary to determine the boundary of the transition to the oscillating regime of convection in
order to exclude temperature oscillations and impurity segregation. Second, it is necessary to investigate the depend-
ence of the radial impurity macrosegregation on the RMF parameters and find those parameters of the magnetic field
that can provide a decrease in the radial impurity macrosegregation. Thus, the problem of optimizing the RMF parame-
ters in the process of single-crystal growth in microgravity is stated.

1. Problem Formulation and Solution Method. Consider a liquid flow in a cylindrical space of radius R and
length L, on which an external rotating magnetic field is acting. The latter is generated by coils located around the
liquid cylinder, and the axes are directed along the radius. The coil windings are energized by alternate current so that
the pole pairs lie on one diameter. When alternate current with a cyclic frequency ω is supplied, the magnetic field
generated by the coils rotates about the cylinder axis. Write the magnetic induction components along the radius r and
in azimuthal angle ϕ in the form [2, 4]

Br = B sin (ωt) ,   Bϕ = B cos (ωt) . (1)

The gaps between the electromagnet poles and the liquid are minimal. It is assumed that the length of the
magnetic field zone is larger than the liquid length and the magnetic induction modulus is constant with r and the z
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axis. The liquid-zone ends (growing and melting crystals) have a conduction close to that of the liquid zone. The in-
duced electric current is closed through the ends in the external circuit. The side surface of the liquid is a solid wall
from a dielectric material (it is most commonly a quartz ampoule wall) or a free surface contacting vacuum or a non-
conducting gas.

The inductionless approximation is used [16], since the magnetic Reynolds number Rem = µ0λRVmax << 1,
where Vmax is the characteristic (maximum) velocity. This condition is fulfilled for all regimes under investigation.

The distribution of currents and fields in a flowing conducting liquid in the general case can be found from
the system of Maxwell equations and the Ohm law written in the vector form

rot E = − ∂B ⁄ ∂t ,   div j = 0 ,   j = λ (E + V × B) , (2)

with the boundary conditions

r = R ,   Er = 0 ;   z = 0 ,   z = L ,   Er = Eϕ = 0 ;   r = 0 ,   symmetry condition. (3)

Further simplification of Eqs. (2) is connected with the fact that, according to the problem conditions, convec-
tive electric currents, as compared to conduction currents, can be neglected. The magnetic field rotation frequency is
small (less than a few kilohertz). The difference in electrical conduction between the liquid and solid ends is also
small. Therefore, in both media the skin-layers are thick, and the electrovortex flow arising from the conduction jump
at the liquid–solid interface is negligibly small. Thus, for the electric field we have the approximate equations

rot E = − ∂B ⁄ ∂t ,   div E = 0 . (4)

Using Eqs. (1), (3), and (4) for the projections of the electric field strength, we obtain the following expres-
sions:

Er = Eϕ = 0 ,   Ez = rωBr = rωB sin (ωt) . (5)

Now we can determine the projections of the Lorentz force created by the RMF:

Fr = − λuBϕ
2
 − λBrBϕωr (1 − w ⁄ ωr) ,   Fϕ = λBr

2ωr (1 − w ⁄ ωr) + λBrBϕ ,   Fz = − λB
2
v . (6)

Below we will consider an axially symmetric flow. Therefore, upon averaging over the rotation frequency, we
obtain for such a flow Lorentz force projections in the form

Fr = − 
1
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2
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1
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The liquid flow in a cylindrical space under the action of gravitational acceleration along the axis is described
by the following system of dimensionless equations for a viscous incompressible liquid:
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In deriving these equations, the Joule heat was neglected. We used the following scales for the linear size, ve-
locity, time, pressure, impurity concentration, and magnetic induction: R, vR−1, R2v−1, ρv2R−2, c0, and B.

Note that the parameters Ha2Reω and Ha determine the influence of the RMF on the liquid flow. The com-
plex parameter Ha2Reω thereby creates a rotational flow of the liquid in the fourth equation of (8), and the Hartmann
number acts on the flow as does the steady-state magnetic field, i.e., it retards the flow.

At the crystallization boundary (z = 0) the doping impurity either precipitates or is absorbed, depending on
the value of the coefficient k: the impurity precipitates into the melt if k < 1 and is absorbed if k > 1. The impurity
flow was calculated by the relation obtained in [11], which takes into account the mass balance of impurity in the liq-
uid and in the melt in the process of crystals growth:

− (∂C ⁄ ∂z)s = RecrSc (1 − kCs) . (9)

The thermal boundary conditions depend on the method of crystal growth. For the Bridgman method on the
side surface the parabolic temperature distribution θ = (z/L)1

 ⁄ 2 from the zero value at the crystallization boundary (z
= 0) to θ = 1 at z = L was given. If the floating-zone method is considered, then on the free side surface the distri-
bution of the heat flow supplied to the liquid zone from the outside is given in the form of the exponent
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and at the boundary z = 0 and z = L (melting and crystallization boundaries) always θ = 0, i.e., symmetry of thermal
conditions about the plane z = L/2 exists.

All velocity components at solid boundaries are equal to zero, and on the free side surface of the liquid r =
1 in the floating-zone method a kinematic condition for the thermocapillary effect takes place to create in the liquid
the thermocapillary convection
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For the numerical solution of the pseudo-three-dimensional (there is no dependence of parameters on the az-
imuthal coordinate ϕ) system of equations (8), a finite-difference implicit scheme with a higher, third order of accu-

Fig. 1. Comparison of the calculations with the experimental data of [2]: 1)
calculation; 2) experiment. Reω = 2.46⋅106, Ha is variable.
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racy in spatial coordinates is used. The scheme permits one to obtain a stable solution up to flow velocities conform-
ing to the oscillating regime of convection. An effective computational algorithm permitting calculations with large
time steps is used. This difference scheme was used by us in a number of works [11–15].

2. Results of the Calculations. The mathematical model used to investigate the effects of the RMF was
tested (Fig. 1) by comparison with the results of experiments with mercury filling a cylindrical vessel (Pr = 0.023) [2].
The ratio of the maximum value of the azimuthal velocity to the rotational velocity of the magnetic field increases
with increasing magnetic field intensity in the experiment as it does in the calculation. The quantitative difference can
be attributed to the fact that in the experiment the rotational velocity of the liquid was measured by a propeller placed
in the liquid. Such a device gives a velocity value not on one axis of the spatial flow but a certain combination of
three velocity components.

2.1. Determination of the boundary of the transition from the laminar-flow conditions to the oscillating regime
of convection. For better understanding of the interaction between the flow generated by the RMF and the flow arising
by another mechanism, we show the flow structure (current function ψ and dimensionless azimuthal velocity W fields)

Fig. 2. Structure of the flow (stream function fields (a, c)) and circular velocity
distributions (b, d) in the liquid (Pr = 0.018) completely filling a cylindrical
vessel — I (Ha = 1, Reω = 104 (a, b); Ha = 2, Reω = 2⋅104 (c, d)), and a ves-
sel with a free cylindrical surface — II (Ha = 1, Reω = 102 (a, b); Ha = 0.5,
Reω = 4⋅104 (c, d)).
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Fig. 3. Characteristic velocities versus the rotating magnetic field intensity for
a liquid with a solid (a) and a free (b) side surface: 1) Wmax; 2) Vmax; 3)
Umax. L/R = 3, Ha = 1 (Ge (Ga)).

Fig. 4. Structure of the flow (stream function fields (a, c)), temperature fields
(b, d), and circular velocity distribution (e) in the liquid (Pr = 0.018) for ther-
mocapillary convection without a magnetic field (a, b) and with a magnetic
field (c, d, e). Ma = 2430, Ha = 2, Reω = 1⋅103.
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in a cylindrical space with a solid surface (Fig. 2, I) and a free side surface (Fig. 2, II). Here, as in all of the follow-
ing figures, solid lines of current correspond to a clockwise flow and dashed lines indicate a counterclockwise flow.
In the rotating liquid, under the action of the centrifugal force there arises a flow from the rotation axis to the periph-
ery and a return flow at the solid ends where the liquid is retarded due to the viscous friction. Viscous Ekman layers
in the liquid arise not only at the ends but also on the side solid surface (Fig. 2, I). The upper row (a, b) shows the
case of a flow under laminar conditions, and the lower row (c, d) — the spontaneous structure in the oscillating flow
regime. Note that the azimuthal velocity gradient dramatically increases at the solid ends with increasing rotation ve-
locity of the liquid in both cases. It is here that the flow stability is lost and oscillations arise. Note that the azimuthal
velocity has a maximum value on the free surface only under the laminar-flow conditions (Fig. 2, IIb). In the other
cases, the azimuthal velocity maximum is positioned in the vicinity of the solid ends.

The dependence of the characteristic flow velocities (maximum values of the azimuthal velocity Wmax and
secondary flow components Umax, Vmax) on the complex parameter Ha2Reω characterizing the rotating magnetic field
intensity is given in Fig. 3. Note first that the secondary flow intensity is very high and this flow can only be ne-
glected if Ha2Reω < 102. Second, the changeover to the oscillating regime of flow (beyond this boundary the curves in
Fig. 3 are shown by dots) occurs at Wmax = 300 in both cases. The azimuthal velocity gradients at the ends at the
instant of onset of oscillations are also approximately equal. The Ha2Reω parameter at the transition boundary is equal
to 9.5⋅103 for the case of the free side surface and 3⋅104 for the solid surface.

Figure 4 gives the stream function, temperature, and azimuthal velocity fields for pure thermocapillary convec-
tion (upper row) and thermocapillary convection in combination with an RMF (lower row). The thermal boundary con-
dition in this case corresponds to crystal growth by the floating-zone method, i.e., the thermal flow distribution at the
boundary r = 1 according to relation (10) is given. The thermocapillary convection at Ma = 2430 is oscillatory and
Fig. 4a and b shows the instantaneous fields of the parameters. Oscillations cease and the flow becomes stationary
when an RMF is applied (Fig. 4c–e). The flow generated by the RMF in the plane (r, z) is close in structure to the
thermocapillary flow, and their interaction leads to a change in the velocity gradients near the  region boundaries. At
interaction of the RMF with gravitational convection a combination of flows widely differing in structure occurs,
which is clearly seen from Fig. 5.

Fig. 5. Structure of the flow (stream function fields (a, b)) and circular veloc-
ity distribution (c) in the liquid (Pr = 0.023) for gravitational thermal convec-
tion without a magnetic field (a) and with a magnetic field (b, c). Gr = 4⋅105,
Ha = 0.158, Reω = 2.5⋅105.
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The boundary of the transition to the oscillating convection regime at an interaction of the RMF with thermal
gravitational and thermocapillary convection is shown in Fig. 6a and b, respectively. The zone of laminar flows lies
below the curves given in these figures. The boundary of the transition to the oscillating regime of pure gravitational
convection is given in Fig. 6a by vertical dotted lines for a Grashof number equal to 1.2⋅106 when the gravitational
acceleration is directed upward from the crystallization boundary and 9.5⋅108 in the case of the opposite direction of
this vector. The rotating magnetic field does not promote an increase in the stability of thermal gravitational convec-
tion in all the regimes considered. It should be noted that if the flow conditions are oscillating, then oscillations con-
tinue at any intensity of the RMF. For thermocapillary convection, the situation is different. This is confirmed by the
data given in Fig. 6b. The complicated and ambiguous dependence of the boundary of the transition to the oscillating
regime at a combination of thermocapillary convection with an RMF is explained by the change in the velocity gradi-
ent at the boundary (r = 1) and ends with increasing Marangoni number and Ha2Reω parameter. The point for Ma =
2430 and Ha2Reω = 2⋅103 lies below the flow stability curve. The effect of the Hartmann number on the boundary of
the transition to the oscillating convection regime is relatively small, which is clearly seen from Fig. 7.

In a real three-dimensional flow, oscillations arise earlier than in a two-dimensional axially symmetric flow
because of the appearance of a small azimuthal velocity. In such a situation, the RMF, creating a large azimuthal ve-
locity, should lead to the elimination of this reason for hydrodynamic instability, which has been corroborated by ex-
periments [10]. They have also shown that the oscillation spectrum has no magnetic-field rotation frequency. This
confirms the validity of the method of averaging over the magnetic-field rotation frequency used in the present work.

Fig. 6. Stability boundary of thermal gravitational (a) and thermocapillary (b)
convection with a rotating magnetic field: 1) toward the crystallization bound-
ary; 2) from the crystallization boundary. Ha = 0.158, L/R = 3, a = 0.47735,
b = 0.5 (a); Ha = 4, L/R = 2, a = 0.8, b = 0.3 (b).

Fig. 7. Stability of the flow induced by the rotating magnetic field in a cylin-
der with a free side surface versus the Hartmann number: 1) L/R = 0.5; 2) 1;
3) 2; 4) 3. Pr = 0.018 (Ge (Ga)).
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2.2. Effect of the RMF on the Impurity Transfer in the Liquid. Once the boundary of the transition to the os-
cillating convection regime has been determined and crystal growth occurs in the laminar-flow conditions, which ex-
cludes impurity microsegregation (impurity banding) due to the convection, we also formulate the problem of
decreasing the impurity macrosegregation, in particular, the radius inhomogeneity of the crystal. To this end, it is im-
portant not only to control the mean convection intensity of the liquid, but also to perform a finer control of the re-
lation between the radial and axial velocities in the region adjoining the crystallization boundary. A rotating magnetic
field can be used for this purpose.

The dependence of the radial inhomogeneity of the impurity distribution in the melt at the crystallization
boundary ∆Cs = Cs,max − Cs,min on the thermal gravitational convection intensity is given in Fig. 8 for two mutually
opposite directions of gravitational acceleration g. The radial impurity distribution is highly sensitive to the relation be-
tween the radial and axial velocities in the vicinity of the crystallization boundary. The interaction of flows so widely
differing in structure (see Fig. 5) at their different intensities gives a strongly varying relation between the velocity
components in this region, which leads to unexpected results (see Fig. 8a). The example of the silicon crystal with an
antimony impurity grown by the Bridgman method on the ground shows that, instead of a decrease, one can obtain,
in specific regimes, a sharp increase in the impurity macrosegregation. Such an unusual and strong effect of the RMF
revealed in the present study should be taken into account in using it in the ground technology.

Fig. 8. Effect of the rotating magnetic field on the radial macrosegregation of
antimony in the silicon crystal grown on the ground by the Bridgman method.
Ha = 0.158; Pr = 0.023, Sc = 5, k = 0.023, Recr = 0.2. Vector g is directed
to the crystallization boundary — a [1) Gr = 1.6⋅105; 2) 4⋅105; 3) 1⋅106; 4) 1⋅107]
and from it — b [1) Gr = 3⋅104; 2) 1.6⋅105; 3) 1⋅106; 4) 1⋅107].

Fig. 9. Effect of the rotating magnetic field on the relative radial macrosegre-
gation of gallium in the germanium crystal grown in zero gravity by the float-
ing zone method: 1) Ma = 130 and Ha = 2; 2) 680 and 2; 3) 2430 and 0.5,
1, and 2; 4) 2430 and 2. Reω is variable, Sc = 10, k = 0.023, Recr = 0.2.
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As is known, the oscillating convection regime is one of the main reasons for the appearance of impurity
bands in the crystal (impurity microsegregation). Therefore, in choosing the RMF parameters, one should know the po-
sition of the boundary of the transition to the oscillating regime (Fig. 6) to avoid this convection regime.

For crystal growth by the floating-zone method in zero gravity, a real possibility of positively influencing the
impurity macrosegregation by using an RMF exists. In so doing, the dependences of the relative radial inhomogeneity
of the impurity distribution on the Ha2Reω parameter given in Fig. 9 for germanium with a gallium impurity show
that there is a possibility of decreasing the radial impurity macrosegregation. However, to achieve this result, a pre-
liminary study on the optimization of the magnetic-field parameters is required. It is also necessary to take into ac-
count the effect of the RMF on the boundary of the transition to oscillations for mixed convection (Fig. 6b).

As mentioned above (Fig. 6), the rotating magnetic field does not always stabilize the flow. Even a laminar
flow without a magnetic field, in using an RMF with wrongly chosen parameters, can lose its hydrodynamic stability,
and oscillations of all parameters will arise. This is clearly shown by the data given in Fig. 10. In this case, low-fre-
quency oscillations leading to the appearance of wide impurity bands may arise (Fig. 11). Specific oscillations of the
type of beats appear sometimes at a combination of three types of convection: thermal gravitational, thermocapillary,
and secondary flow due to the RMF in a cylinder with a free side surface (Fig. 12). Such regimes are possible in the
process of crystal growth on the ground by the floating-zone method with an RMF. In the presence of low-frequency
oscillations of the type of beats, in the crystal wide impurity bands are formed in which thinner layers with a varying
impurity concentration are situated. Specific oscillations of parameters in the liquid may also arise under the action of
the RMF alone, as shown in Fig. 13.

CONCLUSIONS

The numerical investigation of the effects of an RMF under different conditions of crystal growth has shown
that by using such fields, it is possible to effectively control the melt flow and impurity transfer. However, such an

Fig. 10. Oscillations of parameters in the liquid at a combination of thermo-
capillary convection with a rotating magnetic field: Ma = 1280, Pr = 0.018, Sc
= 10, k = 0.023, Recr = 0.2, Ha = 2, Reω = 1.5⋅104, a = 0.8, b = 0.3, L/R =
2 (a); Ma = 1150, Pr = 0.018, Ha = 0.3, Reω = 9.5⋅104, a = 0.8, b = 0.3, and
L/R = 3 (b).

Fig. 11. Oscillation of the radial impurity segregation under the action of a ro-
tating magnetic field for the Si(Sb) crystal grown on the ground by the Bridg-
man method (vector g is directed to the crystallization boundary). Gr = 107, Pr
= 0.023, Ha = 0.158, Reω = 5⋅105, Sc = 5, k = 0.023, Recr = 0.2, a = 0.8, b
= 0.3, and L/R = 3.
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action on the process of crystal growth can lead to both positive and negative results. The floating-zone method is
most promising for obtaining homogeneous monocrystals with the use of an RMF in microgravity. In so doing, to ob-
tain crystals with improved characteristics of the micro- and macrohomogeneities, a very exact determination of the op-
timal parameters of the magnetic field is required. Mathematical modeling and numerical calculations can help in
choosing a zone of such optimal parameters. It may also be supposed that the revealed regimes of specific oscillations
can be used in the technology of obtaining materials in which the generation of bands with a variation of the physical
properties is required.

RMF-excited flows belong to the class of flows in a rotating liquid. Not only are they widely used in tech-
nological processes, but they have also long been a subject of investigation in geophysical applications. Atmospheric
vortices, tornados, long-lived vortices in the ocean — this is an incomplete list of such problems. However, the poten-
tialities of such a physical modeling are rather limited. Mathematical modeling is a very flexible tool for solving such
problems, since one can arbitrarily give any physical properties of the medium and boundary conditions. We have used
our programs for numerical study of the stability of vortex flows in homogeneous and stratified liquids for investigat-
ing certain geophysical problems [17]. In particular, it has been shown that the formation of specific low-frequency os-
cillations combined with high-frequency oscillations is possible (Fig. 13).

This work was supported by the INTAS, project INTAS-2000-0617.

NOTATION

a, b, dimensionless coefficients in (10); B and B, magnetic induction vector and modulus, T; c, impurity con-
centration in the liquid, kg/m3; C = c ⁄ c0, dimensionless impurity concentration; D, diffusion coefficient of impurity in
the liquid, m2/sec; E and E, electric field strength vector and modulus, V/m; F, Lorentz force per unit volume of liq-
uid, in (6) and (7), N/m3; g, gravitational acceleration, m/sec2;  Gr = gβT∆TR3ν−2, Grashof number; Ha =
BR(λ ⁄ ρν)1 ⁄ 2, Hartmann number; j, electric current density vector; A/m2; k, dimensionless equilibrium impurity distri-
bution coefficient; L, liquid length in a cylindrical space, m; Ma = −(∂σ ⁄ ∂T)∆TR(ρνχ)−1, Marangoni number; p, pres-
sure, Pa; Pr = νχ−1, Prandtl number; r, z, and ϕ, cylindrical coordinates, m and rad; R, cylindrical liquid zone radius,
m; Rex = xRν−1, Reynolds number for velocity components (x = u, v, w); Rem, magnetic Reynolds number; Recr =
vcrRν

−1, dimensionless crystallization rate; Reω = ωRν−2, dimensionless angular rotation velocity of the magnetic field;
Sc = νD−1, Schmidt number; t, time, sec; T, temperature, K; U, V, W, characteristic flow velocities; u, v, w, compo-
nents of the velocity vector V on the r, z, ϕ axes, respectively, m/sec; βT, temperature expansion coefficient of the
liquid, K−1; ∆Cs, radial concentration difference; ∆Cs

 ⁄ Cs, relative radial impurity concentration difference; ∆T =
Tmax − Tmin, characteristic temperature differences in the system, K; θ = (T − Tmin)/∆T, dimensionless temperature; λ,
specific conductivity of the liquid, 1/(Ω⋅m); µ0 = 4π⋅10−7, magnetic constant, H/A2; ν, kinematic viscosity of the liq-
uid, m2/sec; ρ, liquid density, kg/m; σ, surface tension coefficient of the liquid, H/m; χ, thermal diffusivity of the liq-
uid, m2/sec; τ, dimensionless time; ψ, dimensionless stream function; ω, circular rotation frequency of the magnetic

Fig. 12. Oscillation of the azimuthal velocity maximum at a combination of
thermocapillary and thermal gravitational velocity with a rotating magnetic
field. Gr = 3.4⋅104, Ma = 1700, Pr = 0.023, Ha = 0.882, and Reω = 4.4⋅104.

Fig. 13. Oscillation of the maximum axial velocity in a rotating liquid with a
free side surface. Pr = 0.023, Ha = 1, Reω = 5.5⋅104, and L/R = 2.
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field, sec−1. Subscripts: cr, crystallization; max, maximum; min, minimum; s, at the crystallization boundary; x, points
to the velocity vector projection on the axis for the Reynolds number; ω, magnetic field rotation; *, boundary of the
transition to oscillations; 0, initial value; overscribed bar, parameter averaging; m, magnetic.
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